Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Virusdisease ; : 1-10, 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20235879

ABSTRACT

D614G mutation plays a significant role in the transmissibility of SARS-CoV-2. Identification of other mutations related to D614G mutation within the Spike protein is pivotal as they might contribute to the pathogenicity of SARS-CoV-2. This study aims to analyze the mutation rate of furin cleavage site (FCS) region of Indonesian origin SARS-CoV-2 and to predict the effect of mutation against Spike priming efficiency by furin. A total of 375 sequences of Indonesian isolates obtained during the early pandemic were used for mutation analysis. Mutation analysis includes mutation pattern, variability, frequency of mutation, amino acid conservation, and mutation rate. The effect of mutation against Spike priming efficiency by furin protease from eight sequences with mutation in the FCS region was analyzed by protein-protein docking. We showed that mutations related to the G614 variant were increasing through time, in contrast to the D614 variant. The FCS region at the position 675-692 contained the most variable (66.67%) as well as the highest mutation frequency (85.92%) and has been observed to be the hotspot mutations linked to the D614G mutation. The D614G hotspot-FCS region (residue 600-700) had the highest amino acid change per site (20.8%) as well as the highest mutation rate as 1.34 × 10-2 substitution per site per year (95% CI 1.79 × 10-3-2.74 × 10-2), compared with other Spike protein regions. Mutations in the FCS region were the most common mutation found after the D614G mutation. These mutations were predicted to increase the Spike priming efficiency by furin. Thus, this study elucidates the importance of D614G mutation to other mutations located in the FCS region and their significance to Spike priming efficiency by furin. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-023-00827-w.

2.
Immunology ; 169(2): 117-131, 2023 06.
Article in English | MEDLINE | ID: covidwho-2327145

ABSTRACT

Hyperinflammation characterized by elevated proinflammatory cytokines known as 'cytokine storms' is the major cause of high severity and mortality seen in COVID-19 patients. The pathology behind the cytokine storms is currently unknown. Increased HMGB1 levels in serum/plasma of COVID-19 patients were reported by many studies, which positively correlated with the level of proinflammatory cytokines. Dead cells following SARS-CoV-2 infection might release a large amount of HMGB1 and RNA of SARS-CoV-2 into extracellular space. HMGB1 is a well-known inflammatory mediator. Additionally, extracellular HMGB1 might interact with SARS-CoV-2 RNA because of its high capability to bind with a wide variety of molecules including nucleic acids and could trigger massive proinflammatory immune responses. This review aimed to critically explore the many possible pathways by which HMGB1-SARS-CoV-2 RNA complexes mediate proinflammatory responses in COVID-19. The contribution of these pathways to impair host immune responses against SARS-CoV-2 infection leading to a cytokine storm was also evaluated. Moreover, since blocking the HMGB1-SARS-CoV-2 RNA interaction might have therapeutic value, some of the HMGB1 antagonists have been reviewed. The HMGB1- SARS-CoV-2 RNA complexes might trigger endocytosis via RAGE which is linked to lysosomal rupture, PRRs activation, and pyroptotic death. High levels of the proinflammatory cytokines produced might suppress many immune cells leading to uncontrolled viral infection and cell damage with more HMGB1 released. Altogether these mechanisms might initiate a proinflammatory cycle leading to a cytokine storm. HMGB1 antagonists could be considered to give benefit in alleviating cytokine storms and serve as a potential candidate for COVID-19 therapy.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Cytokine Release Syndrome , HMGB1 Protein , Molecular Targeted Therapy , RNA, Viral , SARS-CoV-2 , Humans , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , COVID-19/complications , COVID-19/immunology , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/metabolism , RNA, Viral/metabolism , Host Microbial Interactions/immunology , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
Antimicrobial Stewardship and Healthcare Epidemiology ; 3(S1):s28, 2023.
Article in English | ProQuest Central | ID: covidwho-2250336

ABSTRACT

Objectives: Bacterial coinfection occurred in 3.5% of COVID-19 patients, and secondary bacterial infection occurred in 14.3% of patients. In Indonesia, one of the guidelines for COVID-19 therapy is to administer azithromycin 500 mg per 24 hours for mild and moderate cases and azithromycin 500 mg per 24 hours and levofloxacin 750 g per 24 hours for severe cases with suspected secondary bacterial infection. At the beginning of the pandemic, many antibiotics were used, even without proven or suspected bacterial infection. We sought to determine changes in the resistance of "ESKAPE” bacteria (ie, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp) to the antibiotics levofloxacin and azithromycin prior to and during the COVID-19 pandemic. Methods: The study was conducted retrospectively by examining the culture and sensitivity test results of "ESKAPE” bacteria to levofloxacin and azithromycin antibiotics in 2019 (before the pandemic) and April 2020–April 2021 (during the pandemic) in 4 hospitals in Yogyakarta. The number of samples represents all cultures completed within the specified period to detect antibiotic sensitivity patterns. Results: In a top referral hospital, resistance to levofloxacin and azithromycin increased significantly for E. faecium and P. aeruginosa, but at a private hospital, an increase in resistance to azithromycin and levofloxacin occurred for A. baumannii and for Enterobacter spp and resistance to levofloxacin increased significantly. At an academic hospital, there was a considerable decrease in S. aureus and E. faecium resistance to levofloxacin and azithromycin. At the government hospital, S. aureus, K. pneumoniae, P. aeruginosa, Acinetobacter baumannii, and Enterobacter spp developed resistance to levofloxacin. Conclusions: Resistance to azithromycin and levofloxacin by different ESKAPE bacteria increased on average during the COVID-19 pandemic.

4.
PLOS global public health ; 2(7), 2022.
Article in English | EuropePMC | ID: covidwho-2287108

ABSTRACT

In many countries, community pharmacies have played an important role during the COVID-19 pandemic, providing essential medicines and personal protective equipment (PPE), disseminating information on disease prevention and management, and referring clients to health facilities. In recognition of this, there are increasing calls for an improved understanding of the challenges and experiences faced by these providers during the COVID-19 pandemic, with a view to providing them with better support and guidance now and during future emergencies. Between January and February 2021 we conducted 21 qualitative interviews to explore the experiences, safety concerns, and attitudes of pharmacists and pharmacy technicians during the COVID-19 crisis in Indonesia, a country that has recorded more than four million cases since the start of the pandemic. Interview transcripts were analysed using thematic content analysis. Findings indicate that COVID-19 has had a significant impact on pharmacy practices in Indonesia. Most participants implemented preventive measures and adapted their business models to the changing circumstances. The shift to remote sales and home delivery allowed many pharmacies to maintain, and even increase their profit margins due to greater demand for medicines and PPE. However, many participants were concerned about the increased risk of infection due to limited social distancing and prolonged interactions with clients, many of whom displayed COVID-19 symptoms. Importantly, there was a general perception that the government did not sufficiently recognize these risks. In conclusion, the government should consider developing additional operational guidelines and regulatory frameworks to improve the safety, operation, and involvement of community pharmacies in the current pandemic response efforts and any future public health emergencies.

5.
Heliyon ; 9(2): e13382, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2271201

ABSTRACT

Introduction: This study aimed to perform mutation and phylogenetic analyses of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Delta variants and analyze the characteristic signs and symptoms of patients infected with SARS-CoV-2 Delta variant originated from Makassar during the Delta outbreak.Methods: We collected samples from patients who were infected with coronavirus disease 2019 (COVID-19) between June and October 2021. We selected the Quantitative Reverse Transcription-Polymerase Chain Reaction (PCR)-positive samples with a cycle threshold value of <30 for whole genome sequencing. Total viral ribonucleic acid (RNA) was isolated from 34 PCR-positive nasopharyngeal swab samples, and whole genome sequencing was performed using the Oxford Nanopore GridlON sequencer. Phylogenetic and maximum clade credibility analyses were performed using the Bayesian Markov chain Monte Carlo method. Results: It was found that 33 patients were infected with the SARS-CoV-2 Delta variant in this cohort study, among whom 63.6% (21) patients were female. According to the clinical data, 24 (72.7%), 7 (21.2%), and 2 (6.1%) patients had mild, moderate, and severe COVID-19 infections. Phylogenetic analysis based on the spike and RNA-dependent RNA polymerase (RdRp) genes showed that the collected samples were clustered in the main lineage of B.1.617.2 (Delta variant). The Delta variants had a high frequency of distinct mutations in the spike protein region, including T19R (94.12%), L452R (88.23%), T478K (91.17%), D614G (97%), P681R (97%), and D950 N (97%). Other unique mutations found in a smaller frequency in our samples were present in the N-terminal domain, including A27T (2.94%) and A222V (14.70%), and in the receptor-binding domain, including Q414K (5.88%), G446V (2.94%), and T470 N (2.94%). Conclusion: This study revealed the unique mutations in the S protein region of Delta variants. T19R, L452R, T478K/T478R, D614G, P681R, and D950 N were the most common substitutions in Makassar's Delta variant.

6.
PeerJ ; 10: e13522, 2022.
Article in English | MEDLINE | ID: covidwho-1954767

ABSTRACT

Introduction: A global surge in SARS-CoV-2 cases is occurring due to the emergence of new disease variants, and requires continuous adjustment of public health measures. This study aims to continuously monitor and mitigate the impact of SARS-CoV-2 through genomic surveillance, to determine the emergence of variants and their impact on public health. Methods: Data were collected from 50 full-genome sequences of SARS-CoV-2 isolates from Makassar, South Sulawesi, Indonesia. Mutation and phylogenetic analysis was performed of SARS-CoV-2 from Makassar, South Sulawesi, Indonesia. Results: Phylogenetic analysis showed that two samples (4%) were of the B.1.319 lineage, while the others (96%) were of the B.1.466.2 lineage. Mutation analysis of the spike (S) protein region showed that the most common mutation was D614G (found in 100% of the sequenced isolates), followed by N439K (98%) and P681R (76%). Several mutations were also identified in other genomes with a high frequency, including P323L (nsp12), Q57H (ns3-orf3a), and T205I (nucleoprotein). Conclusion: Our findings highlight the importance of continuous genomic surveillance to identify new viral mutations and variants with possible impacts on public health.

7.
Ann Med Surg (Lond) ; 77: 103676, 2022 May.
Article in English | MEDLINE | ID: covidwho-1814090

ABSTRACT

Background: Growing evidence shows that viral co-infection is found repeatedly in patients with Coronavirus Disease-2019 (COVID-19). This is the first report of SARS-CoV-2 co-infection with viral respiratory pathogens in Indonesia. Methods: Over a one month period of April to May 2020, SARS-CoV-2 positive nasopharyngeal swabs in our COVID-19 referral laboratory in Yogyakarta, Indonesia, were tested for viral respiratory pathogens by real-time, reverse transcription polymerase chain reaction (RT-PCR). Proportion of co-infection reported in percentage. Results: Fifty-nine samples were positive for other viral respiratory pathogens among a total of 125 samples. Influenza A virus was detected in 32 samples, Influenza B in 16 samples, Human metapneumovirus in 1 sample, and adenovirus in 10 samples. We did not detect any co-infection with respiratory syncytial virus. Nine (7.2%) patients had co-infection with more than two viruses. Conclusion: Viral co-infection with SARS-CoV-2 is common. These results will provide a helpful reference for diagnosis and clinical treatment of patients with COVID-19.

8.
Lancet Reg Health West Pac ; 22: 100420, 2022 May.
Article in English | MEDLINE | ID: covidwho-1747700

ABSTRACT

Background: Pharmacists have been at the frontline of the COVID-19 response in Indonesia, providing medicines, advice, and referral services often in areas with limited healthcare access. This study aimed to explore their knowledge, attitudes, and practices during the pandemic, so that we can be better prepared for future emergencies. Methods: A cross-sectional online survey of community pharmacists and pharmacy technicians in Indonesia was conducted between July and August 2020. The dataset was analysed descriptively, and logistic regression was used to explore willingness to participate in COVID-19 interventions. Findings: 4716 respondents participated in the survey. Two-thirds (66·7%) reported knowing only "a little" about COVID-19 and around a quarter (26·6%) said they had not received any COVID-19 guidelines. Almost all were concerned about being infected (97·2%) and regularly took steps to protect themselves and their clients (87·2%). Stock-outs of Personal Protective Equipment (PPE) and other products (32·3%) was the main reason for not taking any precautions. Around a third (37·7%) mentioned having dispensed antibiotics to clients suspected of having COVID-19. To support COVID-19 response efforts, most respondents were willing to provide verbal advice to clients (97·8%), distribute leaflets to clients (97·7%), and participate in surveillance activities (88·8%). Older respondents, those identifying as male, and those working in smaller outlets were more willing to provide information leaflets. Those working in smaller outlets were also more willing to engage in outbreak surveillance. Interpretation: Drug retail outlets continue to operate at the frontline of disease outbreaks and pandemics around the world. These providers have an important role to play by helping to reduce the burden on facilities and providing advice and treatment. To fulfil this role, drug retail outlets require regular access to accurate guidelines and steady supplies of PPE. Calls for drug retail outlet staff to plat in response efforts including the provision of information to clients and surveillance could ease escalating pressures on the health system during future outbreaks. Funding: This study was funded by a grant from the Department of Foreign Affairs and Trade, Australia, under the Stronger Health Systems for Health Security Scheme.

9.
Int Microbiol ; 25(3): 531-540, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1680946

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new virus responsible for the COVID-19 pandemic. The emergence of the new SARS-CoV-2 has been attributed to the possibility of evolutionary dynamics in the furin cleavage site (FCS) region. This study aimed to analyze the sequence of the FCS region in the spike protein of SARS-CoV-2 isolates that circulated in the Special Region of Yogyakarta and Central Java provinces in Indonesia. The RNA solution extracted from nasopharyngeal swab samples of confirmed COVID-19 patients were used and subjected to cDNA synthesis, PCR amplification, sequencing, and analysis of the FCS region. The sequence data from GISAID were also retrieved for further genome analysis. This study included 52 FCS region sequences. Several mutations were identified in the FCS region, i.e., D614G, Q675H, Q677H, S680P, and silent mutation in 235.57 C > T. The most important mutation in the FCS region is D614G. This finding indicated the G614 variant was circulating from May 2020 in those two provinces. Eventually, the G614 variant totally replaced the D614 variant from September 2020. All Indonesian SARS-CoV-2 isolates during this study and those deposited in GISAID showed the formation of five clade clusters from the FCS region, in which the D614 variant is in one specific cluster, and the G614 variant is dispersed into four clusters. The data indicated there is evolutionary advantage of the D614G mutation in the FCS region of the spike protein of SARS-CoV-2 circulating in the Special Region of Yogyakarta and Central Java provinces in Indonesia.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/epidemiology , COVID-19/virology , Furin , Humans , Indonesia/epidemiology , Mutation , Pandemics , SARS-CoV-2/genetics , Sequence Analysis , Spike Glycoprotein, Coronavirus/genetics
10.
Front Med (Lausanne) ; 8: 780611, 2021.
Article in English | MEDLINE | ID: covidwho-1581285

ABSTRACT

Background: Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) has been responsible for the current increase in Coronavirus disease 2019 (COVID-19) infectivity rate worldwide. We compared the impact of the Delta variant and non-Delta variant on the COVID-19 outcomes in patients from Yogyakarta and Central Java provinces, Indonesia. Methods: In this cross-sectional study, we ascertained 161 patients, 69 with the Delta variant and 92 with the non-Delta variant. The Illumina MiSeq next-generation sequencer was used to perform the whole-genome sequences of SARS-CoV-2. Results: The mean age of patients with the Delta variant and the non-Delta variant was 27.3 ± 20.0 and 43.0 ± 20.9 (p = 3 × 10-6). The patients with Delta variant consisted of 23 males and 46 females, while the patients with the non-Delta variant involved 56 males and 36 females (p = 0.001). The Ct value of the Delta variant (18.4 ± 2.9) was significantly lower than that of the non-Delta variant (19.5 ± 3.8) (p = 0.043). There was no significant difference in the hospitalization and mortality of patients with Delta and non-Delta variants (p = 0.80 and 0.29, respectively). None of the prognostic factors were associated with the hospitalization, except diabetes with an OR of 3.6 (95% CI = 1.02-12.5; p = 0.036). Moreover, the patients with the following factors have been associated with higher mortality rate than the patients without the factors: age ≥65 years, obesity, diabetes, hypertension, and cardiovascular disease with the OR of 11 (95% CI = 3.4-36; p = 8 × 10-5), 27 (95% CI = 6.1-118; p = 1 × 10-5), 15.6 (95% CI = 5.3-46; p = 6 × 10-7), 12 (95% CI = 4-35.3; p = 1.2 × 10-5), and 6.8 (95% CI = 2.1-22.1; p = 0.003), respectively. Multivariate analysis showed that age ≥65 years, obesity, diabetes, and hypertension were the strong prognostic factors for the mortality of COVID-19 patients with the OR of 3.6 (95% CI = 0.58-21.9; p = 0.028), 16.6 (95% CI = 2.5-107.1; p = 0.003), 5.5 (95% CI = 1.3-23.7; p = 0.021), and 5.8 (95% CI = 1.02-32.8; p = 0.047), respectively. Conclusions: We show that the patients infected by the SARS-CoV-2 Delta variant have a lower Ct value than the patients infected by the non-Delta variant, implying that the Delta variant has a higher viral load, which might cause a more transmissible virus among humans. However, the Delta variant does not affect the COVID-19 outcomes in our patients. Our study also confirms that older age and comorbidity increase the mortality rate of patients with COVID-19.

11.
Influenza Other Respir Viruses ; 15(1): 34-44, 2021 01.
Article in English | MEDLINE | ID: covidwho-1452865

ABSTRACT

BACKGROUND: Severe acute respiratory infection (SARI) accounts for a large burden of illness in Indonesia. However, epidemiology of SARI in tertiary hospitals in Indonesia is unknown. This study sought to assess the burden, clinical characteristics, and etiologies of SARI and concordance of clinical diagnosis with confirmed etiology. METHODS: Data and samples were collected from subjects presenting with SARI as part of the acute febrile Illness requiring hospitalization study (AFIRE). In tertiary hospitals, clinical diagnosis was ascertained from chart review. Samples were analyzed to determine the "true" etiology of SARI at hospitals and Indonesia Research Partnership on Infectious Diseases (INA-RESPOND) laboratory. Distribution and characteristics of SARI by true etiology and accuracy of clinical diagnosis were assessed. RESULTS: Four hundred and twenty of 1464 AFIRE subjects presented with SARI; etiology was identified in 242 (57.6%), including 121 (28.8%) viruses and bacteria associated with systemic infections, 70 (16.7%) respiratory bacteria and viruses other than influenza virus, and 51 (12.1%) influenza virus cases. None of these influenza patients were accurately diagnosed as having influenza during hospitalization. CONCLUSIONS: Influenza was misdiagnosed among all patients presenting with SARI to Indonesian tertiary hospitals in the AFIRE study. Diagnostic approaches and empiric management should be guided by known epidemiology. Public health strategies to address the high burden of influenza should include broad implementation of SARI screening, vaccination programs, clinician education and awareness campaigns, improved diagnostic capacity, and support for effective point-of-care tests.


Subject(s)
Influenza, Human , Orthomyxoviridae , Respiratory Tract Infections , Diagnostic Errors , Hospitalization , Humans , Indonesia/epidemiology , Infant , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology
12.
Sci Rep ; 11(1): 21352, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1493207

ABSTRACT

The outcome of SARS-CoV-2 infection is determined by multiple factors, including the viral, host genetics, age, and comorbidities. This study investigated the association between prognostic factors and disease outcomes of patients infected by SARS-CoV-2 with multiple S protein mutations. Fifty-one COVID-19 patients were recruited in this study. Whole-genome sequencing of 170 full-genomes of SARS-CoV-2 was conducted with the Illumina MiSeq sequencer. Most patients (47%) had mild symptoms of COVID-19 followed by moderate (19.6%), no symptoms (13.7%), severe (4%), and critical (2%). Mortality was found in 13.7% of the COVID-19 patients. There was a significant difference between the age of hospitalized patients (53.4 ± 18 years) and the age of non-hospitalized patients (34.6 ± 19) (p = 0.001). The patients' hospitalization was strongly associated with hypertension, diabetes, and anticoagulant and were strongly significant with the OR of 17 (95% CI 2-144; p = 0.001), 4.47 (95% CI 1.07-18.58; p = 0.039), and 27.97 (95% CI 1.54-507.13; p = 0.02), respectively; while the patients' mortality was significantly correlated with patients' age, anticoagulant, steroid, and diabetes, with OR of 8.44 (95% CI 1.5-47.49; p = 0.016), 46.8 (95% CI 4.63-472.77; p = 0.001), 15.75 (95% CI 2-123.86; p = 0.009), and 8.5 (95% CI 1.43-50.66; p = 0.019), respectively. This study found the clade: L (2%), GH (84.3%), GR (11.7%), and O (2%). Besides the D614G mutation, we found L5F (18.8%), V213A (18.8%), and S689R (8.3%). No significant association between multiple S protein mutations and the patients' hospitalization or mortality. Multivariate analysis revealed that hypertension and anticoagulant were the significant factors influencing the hospitalization and mortality of patients with COVID-19 with an OR of 17.06 (95% CI 2.02-144.36; p = 0.009) and 46.8 (95% CI 4.63-472.77; p = 0.001), respectively. Moreover, the multiple S protein mutations almost reached a strong association with patients' hospitalization (p = 0.07). We concluded that hypertension and anticoagulant therapy have a significant impact on COVID-19 outcomes. This study also suggests that multiple S protein mutations may impact the COVID-19 outcomes. This further emphasized the significance of monitoring SARS-CoV-2 variants through genomic surveillance, particularly those that may impact the COVID-19 outcomes.


Subject(s)
COVID-19/mortality , Mutation , SARS-CoV-2/genetics , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Comorbidity , Female , High-Throughput Nucleotide Sequencing/methods , Hospitalization , Humans , Indonesia/epidemiology , Male , Middle Aged , Phylogeny , Prognosis , Retrospective Studies , Risk Factors , Whole Genome Sequencing/methods , Young Adult
13.
Heliyon ; 7(9): e07936, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1404750

ABSTRACT

OBJECTIVES: Monitoring the spread of the G614 in specific locations is critical as this variant is highly transmissible and can trigger the emergence of other mutations. Therefore, a rapid and accurate method that can reliably detect the D614G mutation will be beneficial. This study aims to analyze the potential use of the two-step Reverse Transcriptase quantitative polymerase chain reaction - high resolution melting analysis (RT-qPCR-HRM) to detect a specific mutation in the SARS-CoV-2 genome. METHODS: Six SARS-CoV-2 RNA samples were synthesized into cDNA and analyzed with the qPCR-HRM method in order to detect the D614G mutation in Spike protein of SARS-CoV-2. The primers are designed to target the specific Spike region containing the D614G mutation. The qPCR-HRM analysis was conducted simultaneously, and the identification of the SARS-CoV-2 variant was confirmed by conventional PCR and Sanger sequencing methods. RESULTS: The results showed that the melting temperature (Tm) of the D614 variant was 79.39 ± 0.03 °C, which was slightly lower than the Tm of the G614 variant (79.62 ± 0.015 °C). The results of the HRM analysis, visualized by the normalized melting curve and the difference curve were able to discriminate the D614 and G614 variant samples. All samples were identified as G614 variants by qPCR-HRM assay, which was subsequently confirmed by Sanger sequencing. CONCLUSIONS: This study demonstrated a sensitive method that can identify the D614G mutation by a simple two-step RT-qPCR-HRM assay procedure analysis, which can be useful for active surveillance of the transmission of a specific mutation.

14.
BMC Med Genomics ; 14(1): 144, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1255937

ABSTRACT

BACKGROUND: Transmission within families and multiple spike protein mutations have been associated with the rapid transmission of SARS-CoV-2. We aimed to: (1) describe full genome characterization of SARS-CoV-2 and correlate the sequences with epidemiological data within family clusters, and (2) conduct phylogenetic analysis of all samples from Yogyakarta and Central Java, Indonesia and other countries. METHODS: The study involved 17 patients with COVID-19, including two family clusters. We determined the full-genome sequences of SARS-CoV-2 using the Illumina MiSeq next-generation sequencer. Phylogenetic analysis was performed using a dataset of 142 full-genomes of SARS-CoV-2 from different regions. RESULTS: Ninety-four SNPs were detected throughout the open reading frame (ORF) of SARS-CoV-2 samples with 58% (54/94) of the nucleic acid changes resulting in amino acid mutations. About 94% (16/17) of the virus samples showed D614G on spike protein and 56% of these (9/16) showed other various amino acid mutations on this protein, including L5F, V83L, V213A, W258R, Q677H, and N811I. The virus samples from family cluster-1 (n = 3) belong to the same clade GH, in which two were collected from deceased patients, and the other from the survived patient. All samples from this family cluster revealed a combination of spike protein mutations of D614G and V213A. Virus samples from family cluster-2 (n = 3) also belonged to the clade GH and showed other spike protein mutations of L5F alongside the D614G mutation. CONCLUSIONS: Our study is the first comprehensive report associating the full-genome sequences of SARS-CoV-2 with the epidemiological data within family clusters. Phylogenetic analysis revealed that the three viruses from family cluster-1 formed a monophyletic group, whereas viruses from family cluster-2 formed a polyphyletic group indicating there is the possibility of different sources of infection. This study highlights how the same spike protein mutations among members of the same family might show different disease outcomes.


Subject(s)
COVID-19/epidemiology , RNA, Viral/genetics , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , COVID-19/pathology , COVID-19/virology , Child , Family , Female , High-Throughput Nucleotide Sequencing , Humans , Indonesia/epidemiology , Male , Middle Aged , Mutation , Phylogeny , RNA, Viral/chemistry , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Whole Genome Sequencing
15.
PeerJ ; 8: e10575, 2020.
Article in English | MEDLINE | ID: covidwho-994190

ABSTRACT

BACKGROUND: Recently, SARS-CoV-2 virus with the D614G mutation has become a public concern due to rapid dissemination of this variant across many countries. Our study aims were (1) to report full-length genome sequences of SARS-CoV-2 collected from four COVID-19 patients in the Special Region of Yogyakarta and Central Java provinces, Indonesia; (2) to compare the clade distribution of full-length genome sequences from Indonesia (n = 60) from March to September 2020 and (3) to perform phylogenetic analysis of SARS-CoV-2 complete genomes from different countries, including Indonesia. METHODS: Whole genome sequencing (WGS) was performed using next-generation sequencing (NGS) applied in the Illumina MiSeq instrument. Full-length virus genomes were annotated using the reference genome of hCoV-19/Wuhan/Hu-1/2019 (NC_045512.2) and then visualized in UGENE v. 1.30. For phylogenetic analysis, a dataset of 88 available SARS-CoV-2 complete genomes from different countries, including Indonesia, was retrieved from GISAID. RESULTS: All patients were hospitalized with various severities of COVID-19. Phylogenetic analysis revealed that one and three virus samples belong to clade L and GH. These three clade GH virus samples (EPI_ISL_525492, EPI_ISL_516800 and EPI_ISL_516829) were not only located in a cluster with SARS-CoV-2 genomes from Asia but also those from Europe, whereas the clade L virus sample (EPI_ISL_516806) was located amongst SARS-CoV-2 genomes from Asia. Using full-length sequences available in the GISAID EpiCoV Database, 39 of 60 SARS-CoV-2 (65%) from Indonesia harbor the D614G mutation. CONCLUSION: These findings indicate that SARS-CoV-2 with the D614G mutation appears to become the major circulating virus in Indonesia, concurrent with the COVID-19 situation worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL